LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

FIRST SEMESTER – APRIL 2022

UCH 1501 – BASIC CONCEPTS IN INORGANIC CHEMISTRY

(21 BATCH ONLY)

		5-06-2022 Dept. No		Max.	: 100	Marks	
Time: 09:00 AM - 12:00 NOON							
SECTION - A							
Answer ALL the Questions							
1.		·				= 5 Marks)	
	a)	Isoelectronic species.			K1	CO1	
	b)	Conjugate acid-base pairs	•		K1	CO1	
	c)	Octet rule.			K1	CO1	
		p-n Junction.			K1 K1	CO1	
•	e)	,					
2.						CO1	
	a) Lithium and are diagonally placed in the periodic K1 CO1 table.						
	b)						
	,	The geometry of SnCl ₂ is _			K1 K1	CO1	
	d) N_2^+ ismagnetic in nature.				K1	CO1	
	e) The molecular formula of perchloric acid is					CO1	
3.	e) The molecular formula of perchloric acid is K1 CO1 Match the following. (5 x 1 = 5 Marks)						
	a)	_	_	Cyanide	K2	CO1	
	b)	Lux-Flood base	_	Not exist	K2	CO1	
	c)	Na in liq. NH ₃	_	de Broglie	K2	CO1	
	ď)	He ₂ molecule	_	Oxide ion donor	K2	CO1	
	e)	Pseudohalogen	_	Reducing agent	K2	CO1	
4.	TRUE or FALSE $(5 \times 1 = 5 \text{ Marks})$						
	a) The actual outermost electronic configuration of Cu is $4s^2 3d^9$.					CO1	
	b) Liquid ammonia is a protic solvent.				K2	CO1	
	c) The bond angle in octahedral geometry is 120°.				K2	CO1	
	d) Boron is used as a doping element in semiconductors.					CO1	
	e)	HF cannot be stored in gla	ss bot	tles.	K2	CO1	
SECTION - B							
Answer any TWO of the following in 100 words $(2 \times 10 = 20 \text{ Marks})$							
				•		•	
5.	-	Explain the postulates of Bo Discuss Mulliken-Jaffee con		•	КЗ	CO2	
6.		Explain Lewis theory of acid			КЗ	CO2	
٠.		-		of hard and soft acids. Give	110	002	
	~,	examples.	P	01 1101 01 0110 0010 001000 0110			
7 .	-				КЗ	CO2	
	b) Compare VB and MO theories of covalent bond.						
8.	a) Write the preparation, properties, and structure of dioxygen					CO2	
		uoride.	_				
	b) Write a note on the strength and hybridisation of halous, halic						
	and	l perhalic acids.					

SECTION C

Answer any TWO of the following in 100 words

 $(2 \times 10 = 20 \text{ Marks})$

- **9.** a)Illustrate the horizontal and vertical relationships in periodic K4 CO3 table.
 - b) Account for the following:
 - i) ionization energy decrease down a group and increases across a period, whereas atomic radii increase down a group and decrease across a period.
 - ii) the removal of first electron from magnesium is difficult whereas the removal of second electron is much easier.
- **10.** a)Write a note on disproportionation and double decomposition K4 CO3 reactions.
 - b)Discuss the role of liquid ammonia as a solvent.
- **11.** a) State Sidgwick-Powell theory and explain its role in the K4 CO3 prediction of molecular shapes.
 - b) Fluorine is diamagnetic whereas oxygen molecule is paramagnetic. Explain.
- **12.** a) Write a note on interhalogen compounds of iodine. K4 CO3
 - b) Explain the nature of conductors, insulators and semiconductors using band theory.

SECTION D

Answer any ONE of the following in 150 words

 $(1 \times 20 = 20 \text{ Marks})$

13. a) Illustrate the Pauling scale of electronegativity.

K5 CO4

- b) Comment on the anomalous behaviour of fluorine.
- c) Balance the following redox reactions by oxidation number method.
 - (i) $MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2$ (acidic medium)
 - (ii) $K_2Cr_2O_7^{2-}(aq) + SO_2(g) \rightarrow Cr^{3+}(aq) + SO_4^{2-}(aq)$
- **14.** a) Explain in detail about the hybridization and geometry of the K5 CO4 following compounds using VSEPR theory.
 - i) SF₄ ii) PCl₃ iii) ClF₃ iv) ICl₄- v) Cl₂O
 - b) Construct a qualitative MO energy level diagram for O₂ molecule. Write the MO electronic configuration and bond order for O₂, O₂⁺, O₂²⁺ O²⁻, O₂²⁻molecules.

SECTION E

Answer any ONE of the following in 150 words

 $(1 \times 20 = 20 \text{ Marks})$

15. a) State and explain Pauling-Slator's rule.

K6 CO5

- b) Methane, ammonia and water are sp³ hybridised. But bond angles are 109°, 107° & 104° respectively–explain.
- c) Discuss the following reactions in liquid ammonia as solvent
 - i) Acid-base reaction ii) Ammonolysis iii) Precipitation iv) Complex formation
- **16.** a) Construct the molecular orbital energy diagram for CO and NO K6 CO5 molecules and calculate the bond order.
 - b) How is bleaching powder prepared? Explain a method of estimating the amount of chlorine present in bleaching powder.